\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx\) [459]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 90 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {(A-B+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(A+B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))} \]

[Out]

(A-B+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+(A+B-C)*(c
os(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-(A-B+C)*sin(d*x+c)*cos
(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {3120, 2827, 2720, 2719} \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {(A+B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}+\frac {(A-B+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)} \]

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])),x]

[Out]

((A - B + 3*C)*EllipticE[(c + d*x)/2, 2])/(a*d) + ((A + B - C)*EllipticF[(c + d*x)/2, 2])/(a*d) - ((A - B + C)
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3120

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a
 + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {\int \frac {\frac {1}{2} a (A+B-C)+\frac {1}{2} a (A-B+3 C) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{a^2} \\ & = -\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {(A+B-C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a}+\frac {(A-B+3 C) \int \sqrt {\cos (c+d x)} \, dx}{2 a} \\ & = \frac {(A-B+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(A+B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.98 (sec) , antiderivative size = 1253, normalized size of antiderivative = 13.92 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (-\frac {2 (A-B+C+2 C \cos (c)) \csc (c)}{d}-\frac {2 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{d}\right )}{a+a \cos (c+d x)}-\frac {A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}}-\frac {B \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}}+\frac {C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}}-\frac {A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (a+a \cos (c+d x))}+\frac {B \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (a+a \cos (c+d x))}-\frac {3 C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (a+a \cos (c+d x))} \]

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])),x]

[Out]

(Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*((-2*(A - B + C + 2*C*Cos[c])*Csc[c])/d - (2*Sec[c/2]*Sec[c/2 + (d*x)
/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d))/(a + a*Cos[c + d*x]) - (A*Cos[c/2 + (d*x)/2]^2*Csc
[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqr
t[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x
 - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Hypergeome
tricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x -
ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]
]]])/(d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) + (C*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/
2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]
*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(a + a*C
os[c + d*x])*Sqrt[1 + Cot[c]^2]) - (A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4},
 {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sq
rt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]
) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Ta
n[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d*(a + a*Cos[c
+ d*x])) + (B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan
[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[
Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[T
an[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin
[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d*(a + a*Cos[c + d*x])) - (3*C*Cos[c/2
+ (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x +
 ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*
Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1
 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Co
s[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d*(a + a*Cos[c + d*x]))

Maple [A] (verified)

Time = 6.47 (sec) , antiderivative size = 281, normalized size of antiderivative = 3.12

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-A E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 C E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (2 A -2 B +2 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-A +B -C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(281\)

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+cos(d*x+c)*a)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+
B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C*EllipticF(cos(1/2*d*x+1/2*c)
,2^(1/2))-3*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A-2*B+2*C)*sin(1/2*d*x+1/2*c)^4+(-A+B-C)*sin(1/2*d*x+1
/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1
/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 266, normalized size of antiderivative = 2.96 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=-\frac {2 \, {\left (A - B + C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (-i \, A - i \, B + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - i \, B + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (i \, A + i \, B - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + i \, B - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (i \, A - i \, B + 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, B + 3 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - {\left (\sqrt {2} {\left (-i \, A + i \, B - 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, B - 3 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/2*(2*(A - B + C)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(-I*A - I*B + I*C)*cos(d*x + c) + sqrt(2)*(-I*A
 - I*B + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - (sqrt(2)*(I*A + I*B - I*C)*cos(d*x
+ c) + sqrt(2)*(I*A + I*B - I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - (sqrt(2)*(I*A -
I*B + 3*I*C)*cos(d*x + c) + sqrt(2)*(I*A - I*B + 3*I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos
(d*x + c) + I*sin(d*x + c))) - (sqrt(2)*(-I*A + I*B - 3*I*C)*cos(d*x + c) + sqrt(2)*(-I*A + I*B - 3*I*C))*weie
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c) + a*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{\sqrt {\cos \left (c+d\,x\right )}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))), x)